电网电压波形是否失真?

 

■ 测量背景


电灯泡内通有交流电,为什么看不到灯泡在闪烁? 文中,使用下图中左侧的黑色AC变压器提供了电网交流电的参考波形。但是电网的波形出现了较大的失真。

▲ 9V变压器,12V变压器,自耦变压器

▲ 9V变压器,12V变压器,自耦变压器

下图显示了电网的参考波形(橙色)波形,从直观上这个波形与正弦波有较大的差异,或者失真。
那么问题:

  • 这个波形是电网波形真实比例波形的反应吗?
  • 如果不是,那么这个失真可能来自于哪儿呢?

▲ 检测白炽灯泡的光强变化以及电网参考电压波形

▲ 检测白炽灯泡的光强变化以及电网参考电压波形

对于上述问题测猜测:

上述波形不是电网电压真是的电压波形反映,应该具有一定的畸变。这个畸变来自于变压器磁芯的磁滞、饱和等非线性环节的因素。

下面通过对比实验测试验证一下这个猜测。

 

01对比实验


1.实验方法

使用另外一个变压器,再加上自耦进行调压,来测试不同的电压下对应的输出波形及其失真的情况。采集电压波形使用 示波器RIGOL DS6104 读取相应的波形数据。显示并计算器谐波分量。

2.实验结果

(1) 黑色变压器

黑色变压器就是在电灯泡内通有交流电,为什么看不到灯泡在闪烁?中作为电压参考的变压器。

▲ 采集到的电压波形

▲ 采集到的电压波形

为了提高计算频谱的准确性,减少频率泄露现象对于频谱计算的 影响。增加采集时间。

▲ 采集到的电压波形

▲ 采集到的电压波形

□ 频谱分析
使用下面语句计算采集数据的频谱:

fftabs = abs(fft.fft(y))

▲ 采集数据的FFT计算出得频谱

▲ 采集数据的FFT计算出得频谱

绘制出1-99对应的频谱。由于数据总长度 T D a t a = 0.14 s T_{Data} = 0.14s TData=0.14s。所以频谱谱线对应的频谱为:
f 1 = 1 T D a t a = 1 0.14 = 7.143 H z f_1 = {1 \over {T_{Data} }} = {1 \over {0.14}} = 7.143Hz f1=TData1=0.141=7.143Hz

因此,50Hz对应的谱线位置在:
N 50 H z = 50 f 1 = 50 1 / T D a t a = 50 × T D a t a = 0.14 × 50 = 7 N_{50Hz} = {{50} \over {f_1 }} = {{50} \over {1/T_{Data} }} = 50 \times T_{Data} = 0.14 \times 50 = 7 N50Hz=f150=1/TData50=50×TData=0.14×50=7

从下图来看,出现在高次谐波多为奇次谐波分量(3,5,7…),这一点从原来波形的情况也可以判断出波形为奇谐波形

▲ 频谱分量1-999

▲ 频谱分量1-999

□ 计算谐波失真分量

计算公式:

上面的15, 600 主要是从前面频谱图观察到对应的基波和谐波分量的分界线。

fftabs = abs(fft.fft(y))
base=sqrt(reduce(lambda x,y:x+y*y, fftabs[1:15], 0))
harmonic = sqrt(reduce(lambda x,y:x+y*y, fftabs[16:600], 0))
printf(harmonic/base)

计算结果: 谐波分量比重:2,63%。

(2) 小型变压器

使用蓝色(输出12V),调节自耦变压器,使其输出大约为(峰峰值)18V。

▲ 输出电压波形

▲ 输出电压波形

计算谐波分量:2.58%

对比前面的结果,波形失真几乎没有变哈。

  • 减少输入信号

使用自耦变压器将输入减少,重新采集测量。此时变压器的输出的峰峰值大约3.5V左右。
▲ 采集到的交流信号波形

▲ 采集到的交流信号波形

计算出的谐波分量: 2.48%。

 

※ 结论


通过前面的实验可以看到,对比了不同的变压器以及不同的输出电压。采集到的信号的失真情况没有特别的改善。所以前面使用普通的电源变压器所得到的电网的50Hz的交流电的波形基本上就是电网电压波形。

为了说明前面的波形失真及其计算的方式,下面使用信号源EE1641B1发出正弦波,进行采集并计算谐波失真。

示波器采集模式设置为:Normal

谐波分量: 1.157%。
▲ 信号源EE1641B1发出的50Hz信号

▲ 信号源EE1641B1发出的50Hz信号

示波器采集模式设置为: High Resolution

▲ 信号源发送的50H组信号

▲ 信号源发送的50H组信号
示波器采样模式为High Resulution

谐波失真分量:1.784%。

随后对信号源所产生的三角波、方波进行了谐波分析。他们所占的比重如下:

正弦波三角波矩形波
1.784%2.48%47.7%

(1) 对称方波

典型周期信号谐波分量 中给出了对称方波信号的谐波分量: a n = 2 E n π sin ⁡ ( n π 2 ) ,    b n = 0 a_n = {{2E} \over {n\pi }}\sin \left( {{{n\pi } \over 2}} \right),\,\,b_n = 0 an=nπ2Esin(2nπ),bn=0
在这里假设E= 1,那么: a 1 = 2 π a_1 = {2 \over \pi } a1=π2
其他高频谐波的均方根为:
a h = { ∑ n = 2 ∞ [ 2 n π sin ⁡ ( n π 2 ) ] 2 } 1 2 = 0.307725 a_h = \left\{ {\sum\limits_{n = 2}^\infty {\left[ {{2 \over {n\pi }}\sin \left( {{{n\pi } \over 2}} \right)} \right]^2 } } \right\}^{{1 \over 2}} = 0.307725 ah={n=2[nπ2sin(2nπ)]2}21=0.307725

from headm import *
from functools import reduce

hlist = map(lambda x:sin(x*pi/2)*2/(x*pi), list(range(10000))[2:])
v = sqrt(reduce(lambda x,y:x+y**2, hlist, 0))

printf(v)

因此谐波比例: η = a h a 1 = 0.307725 2 / π = 0.48337 \eta = {{a_h } \over {a_1 }} = {{0.307725} \over {2/\pi }} = 0.48337 η=a1ah=2/π0.307725=0.48337

(2) 对称三角波形

对称三角波形的各次谐波理论表达式为: a n = 4 E ( n π ) 2 sin ⁡ 2 ( n π 2 ) ,    b n = 0 a_n = {{4E} \over {\left( {n\pi } \right)^2 }}\sin ^2 \left( {{{n\pi } \over 2}} \right),\,\,b_n = 0 an=(nπ)24Esin2(2nπ),bn=0
同样,假设E=1。那么 a 1 = 4 π 2 a_1 = {4 \over {\pi ^2 }} a1=π24
其他的高次谐波的均方根为:


因此谐波比例:

©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页