TD8620手持数字特斯拉计一些基本的定标

高斯计磁场测试仪磁力检测仪磁场测磁仪手持磁通计特斯拉计td8620 给出了刚刚购买到的TB8620的基本测试。基于该手持式的特斯拉计作为基准可以对一些基本的物理量进行定标和验证。

00定标什么?

1.标定HALL器件

对于 线性霍尔传感器SS495、A1308、A1302 很多的模拟HALL器件,它们的手册中给出了对应的灵敏度。那么这个灵敏度的实际量纲是多少呢?可以通过 TD8620 来进行标定。

2.标定直线电流

基本磁场计算公式的简单推导 给出了一些简单电流周围磁场的计算公式,使用TD8620可以对于实际测量磁感应强度具体数值。

3.标定线圈

测量一些实际的线圈的输出磁感应强度与电流之间的关系。

01模拟霍尔器件

1.定标HALL3503

(1) 测量数据

  • 供电:Uw= 4.994V
  • 静态电压:U0=2.5815V
  • 加入静态磁场之后,输出:U1=3.5758
  • TD8620: B=780G
    ▲ HALL3503
    ▲ HALL3503

HALL的灵敏度 η \eta η(单位工作电压)等于: η = U 1 − U 0 U w ⋅ B = 3.5758 − 2.5815 4.994 × 780 = 0.2553 m V / V \eta = {{U_1 - U_0 } \over {U_w \cdot B}} = {{3.5758 - 2.5815} \over {4.994 \times 780}} = 0.2553mV/V η=UwBU1U0=4.994×7803.57582.5815=0.2553mV/V

(2) 数据分析

根据下面CS3503线性霍尔电路中给出的灵敏度为: η = 25 m V / m T \eta = 25mV/mT η=25mV/mT

根据 特斯拉到高速磁感应强度单位的转换: 1 T = 10000 G a u s s 1T = 10000Gauss 1T=10000Gauss

因此,上述的灵敏度转换到Gauss之后为: η = 2.5 m V / G \eta = 2.5mV/G η=2.5mV/G

但是对比前面的数据,这个数据比起实际测量的结果小了大约10倍!

▲ HALL3503资料

▲ HALL3503资料

根据在 百度文库HALL3503 ,或者 HALL3503 数据手册给出的数据为1.3mV/G。由于给定的工作电压为5V。所以如果换算成单位电压时的灵敏度:
η = 1.3 5 = 0.26 m V / V \eta = {{1.3} \over 5} = 0.26mV/V η=51.3=0.26mV/V

▲ HALL3503工作特性

▲ HALL3503工作特性

此时,对比上述结果与实测数据之间是相符合的。

2.测量HALL工作电压与输出之间的关系

(1) 没有磁铁时测量结果

▲ 工作电压与输出电压

▲ 工作电压与输出电压

volt=[1.99,2.11,2.23,2.35,2.48,2.60,2.72,2.84,2.96,3.09,3.21,3.33,3.45,3.58,3.70,3.82,3.94,4.07,4.19,4.31,4.43,4.55,4.68,4.80,4.92,5.04,5.17,5.29,5.41,5.53,5.66,5.78,5.90,6.02,6.14,6.27,6.39,6.51,6.63,6.76,6.88,7.00,7.12,7.24,7.37,7.49,7.61,7.73,7.86,7.98]
out=[1.33,1.40,1.50,1.61,1.71,1.81,1.90,1.99,2.07,2.16,2.25,2.34,2.42,2.51,2.60,2.69,2.78,2.86,2.95,3.04,3.13,3.21,3.30,3.39,3.47,3.56,3.65,3.73,3.82,3.91,3.99,4.08,4.16,4.25,4.34,4.42,4.51,4.59,4.68,4.76,4.85,4.93,5.02,5.10,5.18,5.27,5.35,5.43,5.52,5.60]

(2) 偏置磁铁时测量结果

▲ 工作电压与输出电压

▲ 工作电压与输出电压

volt=[1.99,2.11,2.23,2.35,2.48,2.60,2.72,2.84,2.97,3.09,3.21,3.33,3.45,3.58,3.70,3.82,3.94,4.07,4.19,4.31,4.43,4.55,4.68,4.80,4.92,5.04,5.17,5.29,5.41,5.53,5.66,5.78,5.90,6.02,6.14,6.27,6.39,6.51,6.63,6.76,6.88,7.00,7.12,7.25,7.37,7.49,7.61,7.73,7.86,7.98]
out=[1.33,1.12,1.15,1.21,1.27,1.33,1.40,1.46,1.52,1.58,1.65,1.71,1.77,1.84,1.90,1.97,2.03,2.09,2.16,2.22,2.29,2.35,2.41,2.48,2.54,2.61,2.67,2.74,2.80,2.86,2.93,2.99,3.06,3.12,3.19,3.25,3.32,3.38,3.45,3.51,3.57,3.64,3.70,3.77,3.83,3.90,3.96,4.03,4.09,4.16]

(3) 磁铁引起的输出变化

下面给出工作电压与测量信号变化之间的关系。

▲ 感应磁场变化输出与工作电压之间的关系

▲ 感应磁场变化输出与工作电压之间的关系

对于工作电压大于3V之后的输入输出进行线性拟合。
▲ 输入输出之间的线性关系

▲ 输入输出之间的线性关系

V o = 0.17785 ⋅ U w + 0.04842 V_o = 0.17785 \cdot U_w + 0.04842 Vo=0.17785Uw+0.04842

通过上述分析,可以看到输出电压变为的灵敏度的确与工作电压之间的呈现线性关系。

#!/usr/local/bin/python
# -*- coding: gbk -*-
#============================================================
# DRAW1.PY                     -- by Dr. ZhuoQing 2020-09-26
#
# Note:
#============================================================

from headm import *
from scipy.optimize        import curve_fit

volt0, out0 = tspload('measure', 'volt', 'out')
volt1, out1 = tspload('measure0', 'volt', 'out')

startvid = list(volt0 > 3.0).index(True)
printf(startvid)

outdif = [o2-o1 for o1,o2 in zip(out1,out0)]
wv = volt0[startvid:]
ov = outdif[startvid:]

def linefun(x, a, b):
    return a*x + b

param = (1, 0)
param, conv = curve_fit(linefun, wv, ov, p0=param)
printf(param)

ovfit = linefun(array(wv), *param)

plt.plot(volt0[startvid:], outdif[startvid:], label="Measure")
plt.plot(wv, ovfit, label='Fit')
plt.xlabel("Work Voltage(V)")
plt.ylabel("Out(V)")
plt.grid(True)
plt.tight_layout()
plt.legend(loc='upper right')
plt.show()

#------------------------------------------------------------
#        END OF FILE : DRAW1.PY
#============================================================

▲ 使用二次函数近似

▲ 使用二次函数近似

V 0 = − 0.005 U w 2 + 0.233165 U w − 0.09514 V_0 = - 0.005U_w^2 + 0.233165U_w - 0.09514 V0=0.005Uw2+0.233165Uw0.09514

02验证直线电流

基本磁场计算公式的简单推导给出了直线和圆环周围的磁场计算公式。

1.直线电流

在无限长直线旁边的磁感应强度为:
B = μ 0 I 2 π a B = {{\mu _0 I} \over {2\pi a}} B=2πaμ0I

其中: μ 0 = 4 π × 1 0 − 7 \mu _0 = 4\pi {\kern 1pt} \times 10^{ - 7} μ0=4π×107
I 是电流,a是距离直线电流的直线距离。

2.测量结果

实验参数:

  • I = 2A
  • a = 1厘米=0.01米

那么磁感应强度大约为:B= 0.4Gauss。

从下面的读数来看,在电流启动前后,高斯表读出的数值在 2.1 ~ 1.7高斯之间变化,变化的范围与前计算的结果大体是一致的。

▲ 测量导线周围的磁场

▲ 测量导线周围的磁场

3.线性HALL测量

(1) 理论计算

根据前面测量的线性霍尔3503 的灵敏度 η = 0.2553 m V / V \eta = 0.2553mV/V η=0.2553mV/V,那么在直线电流旁边1厘米处测量到的2A电流的磁感应强度使得霍尔输出变化的电压为:

Δ U = 5 × η × B = 5 × 0.2553 × 0.4 = 0.5106 m V \Delta U = 5 \times \eta \times B = 5 \times 0.2553 \times 0.4 = 0.5106mV ΔU=5×η×B=5×0.2553×0.4=0.5106mV

(2) 实际数据

  • 加电之前:U0 = 2.5766V
  • 加电之后 : U1 = 2.5761V

电流引起HALL的输出变化为: Δ U = 0.5 m V \Delta U = 0.5mV ΔU=0.5mV

▲ 使用HALL测了直线周围的磁感应强度

▲ 使用HALL测了直线周围的磁感应强度

实际测量的数据包变化与理论计算是基本一致的。

03圆环磁场

1.理论推导

根据基本磁场计算公式的简单推导中对于圆环电流磁场推导公式可以知道,对于N圈圆环电流,半径为R,中心的磁感应强度B为:

B = N ⋅ μ 0 I 2 R B = N \cdot {{\mu _0 I} \over {2R}} B=N2Rμ0I

下面是一个由纱包线缠绕的线圈:

  • 2R = 82.5mm
  • 匝数:N=9

▲ 圆环线圈

▲ 圆环线圈

根据上面的公式,可以计算到当电流I=2A时,中心的磁感应强度B大约为:
B = 9 × 4 π × 1 0 − 7 × 2 82.5 × 1 0 − 3 = 2.742 G a u s s B = 9 \times {{4\pi \times 10^{ - 7} \times 2} \over {82.5 \times 10^{ - 3} }} = 2.742Gauss B=9×82.5×1034π×107×2=2.742Gauss

如果使用线性HALL测量,那么输出电压变化值应该为:
Δ U = B × 1.3 m V / G a u s s = 2.742 × 1.3 = 3.565 m V \Delta U = B \times 1.3mV/Gauss = 2.742 \times 1.3 = 3.565mV ΔU=B×1.3mV/Gauss=2.742×1.3=3.565mV

2.测量数据

  • 通电之前,HALL电压 U0 =2.5766V
  • 通电之后,HALL电压U1=2.5819V
    电压变化值: Δ U = 2.5819 − 2.5766 = 5.3 m V \Delta U = 2.5819 - 2.5766 = 5.3mV ΔU=2.58192.5766=5.3mV

直接使用TD8620高斯计测量圆形线圈中心磁场的变化:

  • B0 = 1.6 Gauss
  • B1 = 4.7 Gauss

可以看到变化的磁场强度: Δ B = 4.7 − 1.6 = 3.1 G a u s s \Delta B = 4.7 - 1.6 = 3.1Gauss ΔB=4.71.6=3.1Gauss

通过上面测量结果可以看到它们与理论计算的数值是相近的。

04结论

通过实验,使用 TD8620手持特斯拉计 进行了初步的实验。

  • 对于现行HALL进行了标定。验证了CS3503的磁场灵敏度1.3mV/G的物理意义。这是在工作电压在5V情况下测量输出的信号与磁感应强度之间的关系。
  • 验证了线性HALL器件的输出信号与工作电压之间大体呈现了线性的关系。在使用线性HALL的时候还是需要使用稳定的工作电压。
  • 对于直线电流、圆形电流磁场的理论计算与时间测量之间进行了验证。实际测量的磁感应强度与理论值之间在测量误差范围内是相符的。

 
■ 相关文献链接:

©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页