2021年春季学期-信号与系统-第六次作业参考答案

▓ 第六次作业各个小题求解:

 

▌第一小题 ▌


1、下面所示的锯齿脉冲与单周期正弦脉冲的傅里叶变换:

提示:
(1)需要在计算时,利用到分部积分;
(2)请参考第一大题,将sin函数换成复指数的叠加,在进行计算,方便一些。

要求:只做第一题

 

▌第二小题 ▌


2、求下图所示的F(ω)的傅立叶逆变换。

提示:这个题目没有什么好说的,是来练习FT反变换公式的。在现在,你们只要直接带入FT反变换公式就可以计算了。根据信号频谱的范围,确定FT反变换的区间。将信号的频谱(包括幅度谱和相位谱)表示成复指数形式参与计算比较简单。

要求:只做(a)小题

 

▌第三小题 ▌


3、已知 F T [ f ( t ) ] = F ( ω ) FT\left[ {f\left( t \right)} \right] = F\left( \omega \right) FT[f(t)]=F(ω),利用傅里叶变换的性质确定下列信号的傅里叶变换。

注释:显然,这个题目就是希望通过傅里叶变换的性质,完成信号傅里叶变换公式推导。
1:尺度,时域位移
2: 线性,频域微分(时域线性加权)
3: 尺度,频域微分
4:时域微分,频域微分
5:尺度,时域位移
6:线性,位移,反褶,频域微分
7:线性,尺度,反褶,频域微分

要求:只做(1)(3)(5)(7)

 

▌第四小题 ▌


4、求下列信号的傅里叶变换:

提示:
(1) e 2 + t ⋅ u ( − t + 1 ) = e 3 ⋅ e t − 1 ⋅ u [ − ( t − 1 ) ] e^{2 + t} \cdot u\left( { - t + 1} \right) = e^3 \cdot e^{t - 1} \cdot u\left[ { - \left( {t - 1} \right)} \right] e2+tu(t+1)=e3et1u[(t1)]
根据: e t ⋅ u ( − t ) e^t \cdot u\left( { - t} \right) etu(t)的傅里叶变换: 1 1 − j ω {1 \over {1 - j\omega }} 1jω1,利用位移特性反过来求前面的信号的傅里叶变换。
(2)直接代入公式求解最方便。
(3) e − a t ⋅ u ( t ) e^{ - at} \cdot u\left( t \right) eatu(t)进行 cos ⁡ ( t ) \cos \left( t \right) cos(t)调制;
(4) e − 2 t ⋅ u ( t ) → sin ⁡ ( 4 t ) e^{ - 2t} \cdot u\left( t \right) \to \sin \left( {4t} \right) e2tu(t)sin(4t)调制 → \to 时域线性加权,频域微分。
(5)直接代入公式求解最方便;
(6) f ( t ) f\left( t \right) f(t) → \to 频移: f ( t ) ⋅ e j ω 0 t f\left( t \right) \cdot e^{j\omega _0 t} f(t)ejω0t → \to 频域微分: t ⋅ f ( t ) ⋅ e j ω 0 t → t \cdot f\left( t \right) \cdot e^{j\omega _0 t} \to tf(t)ejω0t线性: t ⋅ f ( t ) ⋅ e j ω 0 ( t − 3 ) t \cdot f\left( t \right) \cdot e^{j\omega _0 \left( {t - 3} \right)} tf(t)ejω0(t3)

要求:只做(1)(3)(5)

 

▌第五小题 ▌


5、求解列信号的傅里叶反变换:

提示:
(1) s g n ( t ) ↔ 2 j ω {\mathop{\rm sgn}} \left( t \right) \leftrightarrow {2 \over {j\omega }} sgn(t)jω2,再利用频域微分定理
(2)对于 F ( ω ) F\left( \omega \right) F(ω)进行因式分解,形成三项。然后再分别写出对应傅里叶反变换后对应的时域信号。

要求:只做(1)

 

▌第六小题 ▌


6、已知实数函数 f ( t ) f\left( t \right) f(t)的傅里叶变换为 F ( ω ) F\left( \omega \right) F(ω)。它的幅度谱和相位谱如下图所示。函数 f a ( t ) , f b ( t ) , f c ( t ) , f d ( t ) f_a \left( t \right),f_b \left( t \right),f_c \left( t \right),f_d \left( t \right) fa(t),fb(t),fc(t),fd(t)的幅度谱与 f ( t ) f\left( t \right) f(t)的幅度谱相同。他们的相位谱如图(a),(b),(c),(d)所示。

f ( t ) f\left( t \right) f(t)分别表示 f a ( t ) , f b ( t ) , f c ( t ) , f d ( t ) f_a \left( t \right),f_b \left( t \right),f_c \left( t \right),f_d \left( t \right) fa(t),fb(t),fc(t),fd(t)

提示:这里主要考虑时移,反褶所带来的的信号相位的变化。

 

▌第七小题 ▌


7、已知 f ( t ) f\left( t \right) f(t)的傅里叶变换为:

如下图所示。

求: f 2 ( t ) f^2 \left( t \right) f2(t)的傅里叶变换,并画出它的频谱图。

提示:这一题目需要应用到FT的频域卷积定理;今天课程没有讲,大家参考课件中的定理。实际上,本题的主要目的是要求绘制出f(t)的频域与其自身的卷积。最后还需要考虑到2π的因子。

 

▌第八小题 ▌


8、已知信号如右图所示,试利用时域微分积分性质求其频谱:

提示:参照课件中给出的描述,自行求解吧。

要求:只做(b)

 

▌第九小题 ▌


9、已知阶跃函数和正弦、余弦函数的傅立叶变换:

求单边正弦函数和单边余弦函数的傅立叶变换。

提示:利用傅里叶变换频域卷积定理。

本题为思考题

 

▌第十小题 ▌


10、 已知三角脉冲 f 1 ( t ) f_1 \left( t \right) f1(t) 的傅里叶变换为:

F 1 ( ω ) = E τ 2 S a 2 ( ω τ 4 ) F_1 \left( \omega \right) = {{E\tau } \over 2}Sa^2 \left( {{{\omega \tau } \over 4}} \right) F1(ω)=2EτSa2(4ωτ)

试利用有关定理求:

f 2 ( t ) = f 1 ( t − τ 2 ) ⋅ cos ⁡ ( ω 0 t ) f_2 \left( t \right) = f_1 \left( {t - {\tau \over 2}} \right) \cdot \cos \left( {\omega _0 t} \right) f2(t)=f1(t2τ)cos(ω0t)

的傅里叶变换 F 2 ( ω ) F_2 \left( \omega \right) F2(ω)

要求分别应用频移性质、频域卷积两种方法性质分别求解上述 F 2 ( ω ) F_2 \left( \omega \right) F2(ω)

提示:没有提示。

 

▌MATLAB实验题1 ▌


使用MATLAB完成下面信号的傅里叶变换:

相应的MATLAB命令为:

fourier((heaviside(t+1)-heaviside(t-1))*(1-abs(t)))
fourier(heaviside(t+1)-heaviside(t-1))
fourier(1/t)
fourier(exp(-t^2))
fourier(exp(-t)*heaviside(t))

使用MATLAB完成下面信号的傅里叶逆变换:

相应的MATLAB命令为:

ifourier(w*exp(-3*w)*heaviside(w))
ifourier(1/(1+w^2))
ifourier(w)
ifourier(heaviside(w+1)-heaviside(w-1))
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页