2021年春季学期-信号与系统-第八次作业参考答案

▓ 第八次作业各个小题参考答案

 

▌第一小题 ▌


1.已知信号 f ( t ) f\left( t \right) f(t) 进行PCM(Pulse Code Modulation)。 f ( t ) = 8 + A sin ⁡ ω t ,     A ≤ 7 V f\left( t \right) = 8 + A\sin \omega t,\,\,\,A \le 7V f(t)=8+Asinωt,A7V如果希望量化电压不大于10mV,那么传输该信号的编码位数N最小等于多少?

提示:码位数应该满足’ 2 N > M 2^N > M 2N>M,其中M是量化后电压个数。

#============================================================
# DRAW1.PY                     -- by Dr. ZhuoQing 2019-11-07
#
#!/usr/local/bin/python
# -*- coding: gbk -*-
#============================================================

from head import *
xyc = XYCoor(300, 301, 327, 308, 1, 15)
continueID = 319
quantumID = 320

curveLen = tspgetcurvelength(continueID)
printf(curveLen)

t = linspace(0, 1, curveLen)
y = sin(t * 2 * pi) * 7 + 8
yy = [int(r) for r in y]
#------------------------------------------------------------

tt = t
for i in range(len(yy) - 1):
    if yy[i] != yy[i + 1]:
        tc = (tt[i] + tt[i + 1]) / 2
        tt[i] = tc
        tt[i + 1] = tc

#------------------------------------------------------------
xyc.SetCurveXY(t, y, continueID)
xyc.SetCurveXY(tt, yy, quantumID)

tsprv(-3)

#------------------------------------------------------------
tspbeep(1200, 200)

#------------------------------------------------------------
#        END OF FILE : DRAW1.PY
#============================================================

□ 本题是思考题

 

▌第二小题 ▌


2.考题:如果利用模拟电话线传输二进制数据,需要接入调制解调器(MODEM)以适应电话线信道的要求,电话线的带宽为300~3400Hz,如果要求MODEM的传输速率为4800bit/s,请绘制出能够实现的MODEM的系统原理框图。

提示:王文渊教授参考4.11节

□ 本题是思考题

 

▌第三小题 ▌


3.实现信号调制需要使用乘法器,很多实际系统是通过非线性来实现乘法运算。比如下图所示的调幅系统,则使用输入输出呈现平方关系的非线性系统,对于信号与载波信号的相加信号进行处理,然后通过一个带通系统选择出幅度调制信号。

假设输入信号 x ( t ) x\left( t \right) x(t)的频谱受限, X ( ω ) = 0 ,    ∣ X ∣ > ω M X\left( \omega \right) = 0,\,\,\left| X \right| > \omega _M X(ω)=0,X>ωM。请确定带通滤波器的参数 A , ω h , ω l A,\omega _h ,\omega _l A,ωh,ωl,使得输出信号 y ( t ) y\left( t \right) y(t) y ( t ) = x ( t ) ⋅ cos ⁡ ω c t y\left( t \right) = x\left( t \right) \cdot \cos \omega _c t y(t)=x(t)cosωct此时,对于调制频率 ω c \omega _c ωc与输入信号最大频率 ω M \omega _M ωM之间是否存在着一定限制条件?是什么?

 

▌第四小题 ▌


4. 设 f ( t ) f\left( t \right) f(t) 的奈奎斯特频率是 ω 0 \omega _0 ω0 ,求下列信号的奈奎斯特品率。

 

▌第五小题 ▌


5. 已知信号 x 1 ( t ) x_1 \left( t \right) x1(t) x 2 ( t ) x_2 \left( t \right) x2(t)的频谱为: { X 1 ( ω ) = 0 ,    ∣ ω ∣ ≥ ω 1 X 2 ( ω ) = 0 ,    ∣ ω ∣ ≥ ω 2 \left\{ \begin{matrix} {X_1 \left( \omega \right) = 0,\,\,\left| \omega \right| \ge \omega _1 }\\{X_2 \left( \omega \right) = 0,\,\,\left| \omega \right| \ge \omega _2 }\\\end{matrix} \right. {X1(ω)=0,ωω1X2(ω)=0,ωω2 y ( t ) = x 1 ( t ) ⋅ x 2 ( t ) y\left( t \right) = x_1 \left( t \right) \cdot x_2 \left( t \right) y(t)=x1(t)x2(t),用 δ T ( t ) \delta _T \left( t \right) δT(t) y ( t ) y\left( t \right) y(t)采样得到信号为 y s ( t ) y_s \left( t \right) ys(t)。给出能从 y s ( t ) y_s \left( t \right) ys(t)恢复 y ( t ) y\left( t \right) y(t)的最大采样间隔。

 

▌第六小题 ▌


6. 已知信号 x ( t ) = 28 cos ⁡ ( 48 π t ) ⋅ cos ⁡ ( 280 π t ) x\left( t \right) = 28\cos \left( {48\pi t} \right) \cdot \cos \left( {280\pi t} \right) x(t)=28cos(48πt)cos(280πt),用 f s = 350 H z f_s = 350Hz fs=350Hz的频率对该信号进行采样。

(1)华出彩影后信号的频谱;
(2)为了从采样信号中无失真的恢复出 x ( t ) x\left( t \right) x(t),求所用理想低通滤波器的带宽;
(3)对 x ( t ) x\left( t \right) x(t)进行采样的奈奎斯特频率是多少?

 

▌第七小题 ▌


7.思考题:系统如下图所示:



(1)为从 f s ( t ) f_s \left( t \right) fs(t)无失真恢复 f ( t ) f\left( t \right) f(t),求最大抽样间隔 T max ⁡ T_{\max } Tmax

(2)当 T = T max ⁡ T = T_{\max } T=Tmax时,画出 f s ( t ) f_s \left( t \right) fs(t)的幅度谱 ∣ F s ( ω ) ∣ \left| {F_s \left( \omega \right)} \right| Fs(ω)

▓ 本题是思考题

 

▌第八小题 ▌


8. 已知 x ( t ) x\left( t \right) x(t) X ( ω ) X\left( \omega \right) X(ω)是已对傅里叶变换, x s ( t ) x_s \left( t \right) xs(t) x ( t ) x\left( t \right) x(t)的采样,即: x s ( t ) = ∑ n = − ∞ ∞ x ( n T ) δ ( t − n T ) x_s \left( t \right) = \sum\limits_{n = - \infty }^\infty {x\left( {nT} \right)\delta \left( {t - nT} \right)} xs(t)=n=x(nT)δ(tnT)采样周期为 T = 1 0 − 4 T = 10^{ - 4} T=104,根据采样定理判断,在下列条件下,可否从 x s ( t ) x_s \left( t \right) xs(t)中完全恢复 x ( t ) x\left( t \right) x(t)

 

▌第九小题 ▌


9. 已知信号的频谱 X ( ω ) X\left( \omega \right) X(ω)如下图所示:

(1) 求 x ( 2 t ) x\left( {2t} \right) x(2t) x ( 2 / t ) x\left( {2/t} \right) x(2/t)的奈奎斯特采样周期;

(2)用 δ T = ∑ n = − ∞ ∞ δ ( t − n π 8 ) \delta _T = \sum\limits_{n = - \infty }^\infty {\delta \left( {t - {{n\pi } \over 8}} \right)} δT=n=δ(t8nπ),对 x ( t / 2 ) x\left( {t/2} \right) x(t/2) x ( t ) x\left( t \right) x(t) x ( 2 t ) x\left( {2t} \right) x(2t)进行采样,画出采样信号 x s ( t / 2 ) , x s ( t ) x_s \left( {t/2} \right),x_s \left( t \right) xs(t/2),xs(t) x s ( 2 t ) x_s \left( {2t} \right) xs(2t)的频谱,并判断是否会发生混叠。

 

▌第十小题 ▌


10. 已知 f ( t ) f\left( t \right) f(t) F ( ω ) F\left( \omega \right) F(ω) 是一对傅里叶变换, F ( ω ) F\left( \omega \right) F(ω) 为频带有限信号, ∣ ω ∣ ≤ ω m \left| \omega \right| \le \omega _m ωωm 。用周期矩形脉冲 p ( t ) p\left( t \right) p(t) 把 进行平顶采样得到 f s ( t ) f_s \left( t \right) fs(t) ,如下图所示:

采样周期为: T s T_s Ts

(1)证明 f ( t ) f\left( t \right) f(t)的傅里叶变换为: F s ( ω ) = 1 T s ∑ n = − ∞ ∞ F ( ω − n ω s ) ⋅ P ( ω ) F_s \left( \omega \right) = {1 \over {T_s }}\sum\limits_{n = - \infty }^\infty {F\left( {\omega - n\omega _s } \right) \cdot P\left( \omega \right)} Fs(ω)=Ts1n=F(ωnωs)P(ω)其中: P ( ω ) = ∫ − ∞ ∞ p ( t ) ⋅ e − j ω t d t P\left( \omega \right) = \int_{ - \infty }^\infty {p\left( t \right) \cdot e^{ - j\omega t} dt} P(ω)=p(t)ejωtdt(2)说明平顶采样频谱与自然采样频谱的异同;

(3)给出从 f s ( t ) f_s \left( t \right) fs(t)无失真恢复 f ( t ) f\left( t \right) f(t)所需满足的条件。

 

▌第十一小题 ▌


11. 信号 g ( t ) g\left( t \right) g(t)的最高频谱为 ω m \omega _m ωm,其频谱为 G ( ω ) G\left( \omega \right) G(ω)如下图所示:

用下图速传的周期信号 f ( t ) f\left( t \right) f(t) g ( t ) g\left( t \right) g(t)进行自然采样。

求采样后信号频谱的表达式,并画出频谱图。

 

▌第十二小题 ▌


12.选做实验题:利用MATLAB生成4800bit/s数传机中发送的模拟信号。

生成50个bit随机码流。
>> bitString = floor(rand(1,50)*2);

▲ 随机码流波形

▲ 随机码流波形

使用MATLAB中的频谱分析工具,验证生成信号的频谱的确只有单边带。

plot(abs(fft(x))

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页