AI视觉组基于ESP32的裁判系统第一版本设计要求

简 介: 面对第十六届全国大学生智能车竞赛中新增加的一些组别的要求,比如室内AI组,对于车模任务增加的检测任务,设计了基于ESP32为核心的比赛系统。本文给出了对于比赛系统功能的要求。

关键词 比赛系统ESP32室内AI智能车竞赛

 

01 AI室内视觉组裁判系统要求


1.裁判系统要求

全国大学生智能车竞赛 中的 室内AI视觉组 要求参赛车模根据识别路边场景完成相应的动作:

  • 对于动物图片要求在规定区域停止3秒钟;
  • 对于水果图片要求使用车载激光器投射光斑;
  • 对于三岔路口的数字要求选择左行和右行;

(1)裁判系统功能

因此对于裁判系统需要能够完成以下判断功能:

  • 判断车模在某一区域是否能够停留三秒钟;
  • 判断车模在通过三岔路口是否首次按照规定路口行进;
  • 判断车模是否将激光盘点投射在图片中心;
  • 车模运行时间计时功能;

由于比赛中检测点比较多,至少包括有一个三岔路口、一个动物图片、一个水果图片。在决赛的时候有可能还会增加到 4~ 5个检测点。因此要求设计的检测点能够离散分布设置,并通过现场WiFi网络连接在一起进行统一的设置与读取信息。

▲ 逐飞科技给出的裁判系统的演示

▲ 逐飞科技给出的裁判系统的演示

(2)裁判系统功能指标

【Ⅰ.车模运行时间功能】

对于车模形式出车库与返回车库之间的时间差进行计时。

指标要求:
计时精度为1ms;
接口形式:USB,WiFi,UART(可选)
通讯协议: 能够与以往智能车竞赛比赛系统软件兼容

它能够通过WiFi与其它各个模块相连,也可以单独作为计时器系统应用于其它各赛题组。

【Ⅱ.检测激光光斑功能】

检测经过125Hz调试的激光光斑信号。

指标要求:
灵敏度:5mW红色激光,光斑直径在5厘米左右
响应时间:小于500ms
检测点:5个,分为两组;一组为一个监测点,位于靶心检;另外一组包括四个检测点,位于目标四周检;
相应形式:红色LED(直径大于10mm)、绿色LED(直径大于10mm)、蜂鸣器;

▲ 光电检测传感器的位置分布

▲ 光电检测传感器的位置分布

功能描述:

  • 对于水果目标靶,如果靶心检测点检测到信号,而四周检测点没有检测到信号,则表示激光发送成功;如果任何一个四周检测点检测到激光信号,都表示激光发送失败;
  • 对于动物目标靶,任何一个检测点检测到激光信号,都表示激光投射失败;
  • 检测到激光发送成功时,绿色LED点亮,同时蜂鸣器鸣叫,五秒钟后停止; 检测到激光发送失败时,红色LED闪烁,频率10Hz,占空比50%,持续时间五秒钟,同期蜂鸣器也做相同的断续鸣叫。

▲ 目标靶位上的响应LED

▲ 目标靶位上的响应LED

【Ⅲ.判断停留时间功能】

检测车模进入AprilTag前后各50厘米的范围内,车模停留的时间。只是对于动物标靶旁边的范围,检查车模是否停留超过3秒钟。

检测指标:
检测范围:1米
时间定时精度:1ms
指示方式:LED和蜂鸣器

如果车模停留时间少于3秒钟,则红色LED闪烁,频率10Hz,占空比50%,持续时间五秒钟,同期蜂鸣器也做相同的断续鸣叫。

如果车模在停留区的时间超过3秒钟,则绿色LED点亮,同时蜂鸣器鸣叫,五秒钟后停止。

【Ⅳ.检测三岔路口功能】

检测车模在通过三岔路口时,是否安装正确的路径行进。

检测指标:
在三岔路口两个出口处设置车辆通过检感应线;
对于前后两次通过能够自动进行切换,了就是第一次走一边,第二次行走另外一边;

对于判断结果成功与识别的知识与前面【判断停留时间功能】相同。

【Ⅴ.各检测点联网功能】

由于比赛中可能同时具有多个检测模块,所以要求这些模块能够通过局部WiFi链接在一起,由控制软件同一控制。

为了防止局域网中断或者不具备,各个模块也可以单独进行设置工作。

【Ⅵ.其他基本功能】
  • 控制模块采用相同的主板,通过其中的拨码开关来设置具体的功能(计时、三岔路口、停留时间、激光光板检测);
  • 模块可以通过3.7 ~4.8V de 充电电池供电。整体功率消耗小于20mA。在2AH的蓄电池供电下可以持续工作100小时;
  • 模块也可以通过5V直流电源提供电源;

2.前期验证实验

(1)信号检测试验

  1. 在 推文 傅里叶帮我看看,谁在照射我? 描述了检测投射在水果图片上激光信号的检测方案。给出了激光投射器的调制频率的要求;并对基于 微型光电二极管(SP-1CL3) 检测调制激光信号的方法进行验证。
  2. ESP32检测调制激光信号程序优化测试ESP32S基本模块的功能,并验证是否可以应用在AI智能车竞赛检测激光信号中 验证并优化了基于ESP32对信号采集与检测的验证;
  3. 基于ESP32模块利用检测线圈检测车模停止时间,室内视觉AI裁判系统 验证了通过简单的感应线圈来判断车模通过时间的方案。

因此,基于以上实验,下面的设计便是基于ESP32模块的设计方案。由于该模块比较便宜(单个模块大约为¥10元),集成有WiFI,蓝牙通信功能。提供了丰富的外部模块,AD(六个通道),DA,SPI,I2C,UART等等。

(2)逐飞科技验证实验

逐飞科技给出可对于AI视觉裁判系统的验证演示结果。在实际识别图片中心和四周布置光电检测之后,来识别调制(125Hz)激光信号的功能。验证了对于激光调制信号检测方案的灵敏性和快速响应特性。

▲ 逐飞科技给出的AI检测系统测试结果

▲ 逐飞科技给出的AI检测系统测试结果

 

02 设计参考方案


1.系统设计组成

为了便于部署安装,AI检测系统包括三部分:

  • 控制主板: 包括了ESP32,激光检测放大电路,感应线圈放大电路,3.3V稳压源等
  • LED,蜂鸣器小板: 包括有红色LED(D:10mm),绿色LED(D:10mm),蜂鸣器以及它们相应的驱动电路;通过6PIN接口与主板相连。
  • 电源: 包括5V电源,或者相关4.8V充电电池与充电器等;

2.电路主控板1

(1)电路原理图

下面给出了基于ESP32的检测系统主控板设计。

▲ 电路原理图整体设计

▲ 电路原理图整体设计

可以在上述原理图上,增加CH340G(或者CH340E)与UART2相连,这样主板就可以具有WiFi,USB端口与裁判系统计算机相连了。

(2)感应线圈放大电路

由U2组成了两路感应线圈放大电路。对于来自于感应线圈的电磁信号进行放大滤波之后再由ESP32进行采集、数字滤波、判断处理。具有两个独立的线圈输入端口P1,P2。

两路线圈可以应用在:

  • 判断区域停留时间,将两个线圈部署在相距1米的距离处;
  • 判断三岔路通过顺序,将两个线圈部署在三岔路口两个串口处;

▲ 感应线圈

▲ 感应线圈

线圈基本参数:
串联电阻:18.85Ω
电感:1.778mH

(3)光电信号放大电路

由U3组成光电信号放大电路。用于激光检测的光电传感器使用 微型光电二极管(SP-1CL3)

▲ SP-1CL3 外形与尺寸

▲ SP-1CL3 外形与尺寸

光电二极管分为两组:

  • 中心靶位:由一个SP-1CL3光电二极管组成,部署在目标靶位的中心位置;
  • 四周靶位:由四个SP-1CL3并联组成,部署在目标靶位四个边的中心位置;

▲ 两组光电二极管

▲ 两组光电二极管

(4)基于黄色LED的检测带

这部分内容主要是为了能够将来替代【2】中的感应线圈,而使用黄色LED制作的光电检测板。在 基于黄色LED反向电流的光电检测板 给出了对于这种检测方式的测试的结果。

3.指示灯小板

LED,蜂鸣器小板是用来承载指示两个指示LED和蜂鸣器的小板。将来它固定在目标板的上方。

在小板上包括有驱动LED,蜂鸣器的 UNL2003(达林顿管阵列),6PIN的接口以及LED, 蜂鸣器焊盘等。

▲ LED,蜂鸣器小板

▲ LED,蜂鸣器小板

4.快速制版测试电路板

▲ 快速制版实验电路PCB设计

▲ 快速制版实验电路PCB设计

 

▌设计总结


本文给出了用于AI视觉组的裁判系统设计要求和参考方案。它除了具备有传统的计时功能之外,还可以对于车模停留时间,激光信号检测,三岔路口通过顺序等进行判断。

AI视觉组标靶检测方案测试演示

基于ESP32的设计,使得其可以在未来比赛中直接将比赛成绩信息上传到云端,完成原始信息的获取。基于WiFi还可以将现场的多个检测点(3~5)相互连接在一起形成统一的开启和设置。

 


■ 相关文献链接:


  1. 设计参考方案AD工程文件:AD\SmartCar\2021\LaserDetect\AILasserDetectrESP32.PcbDoc ↩︎

已标记关键词 清除标记
<p style="font-size:16px;"> 本课程适合具有一定深度学习基础,希望发展为深度学习之计算机视觉方向的算法工程师和研发人员的同学们。<br /> <br /> 基于深度学习的计算机视觉是目前人工智能最活跃的领域,应用非常广泛,如人脸识别和无人驾驶中的机器视觉等。该领域的发展日新月异,网络模型和算法层出不穷。如何快速入门并达到可以从事研发的高度对新手和中级水平的学生而言面临不少的挑战。精心准备的本课程希望帮助大家尽快掌握基于深度学习的计算机视觉的基本原理、核心算法和当前的领先技术,从而有望成为深度学习之计算机视觉方向的算法工程师和研发人员。<br /> <br /> 本课程系统全面地讲述基于深度学习的计算机视觉技术的原理并进行项目实践。课程涵盖计算机视觉的七大任务,包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)、人脸识别、图像描述、图像检索、图像生成(利用生成对抗网络)。本课程注重原理和实践相结合,逐篇深入解读经典和前沿论文70余篇,图文并茂破译算法难点, 使用思维导图梳理技术要点。项目实践使用Keras框架(后端为Tensorflow),学员可快速上手。<br /> <br /> 通过本课程的学习,学员可把握基于深度学习的计算机视觉的技术发展脉络,掌握相关技术原理和算法,有助于开展该领域的研究与开发实战工作。另外,深度学习之计算机视觉方向的知识结构及学习建议请参见本人CSDN博客。<br /> <br /> 本课程提供课程资料的课件PPT(pdf格式)和项目实践代码,方便学员学习和复习。<br /> <br /> 本课程分为上下两部分,其中上部包含课程的前五章(课程介绍、深度学习基础、图像分类、目标检测、图像分割),下部包含课程的后四章(人脸识别、图像描述、图像检索、图像生成)。 </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/201902221256508000.gif" alt="" /><img src="https://img-bss.csdn.net/201902221257045928.gif" alt="" /><img src="https://img-bss.csdn.net/201902221257156312.gif" alt="" /><img src="https://img-bss.csdn.net/201902221257252319.gif" alt="" /> </p>
相关推荐
<p style="font-size:16px;"> 本课程适合具有一定深度学习基础,希望发展为深度学习之计算机视觉方向的算法工程师和研发人员的同学们。<br /> <br /> 基于深度学习的计算机视觉是目前人工智能最活跃的领域,应用非常广泛,如人脸识别和无人驾驶中的机器视觉等。该领域的发展日新月异,网络模型和算法层出不穷。如何快速入门并达到可以从事研发的高度对新手和中级水平的学生而言面临不少的挑战。精心准备的本课程希望帮助大家尽快掌握基于深度学习的计算机视觉的基本原理、核心算法和当前的领先技术,从而有望成为深度学习之计算机视觉方向的算法工程师和研发人员。<br /> <br /> 本课程系统全面地讲述基于深度学习的计算机视觉技术的原理并进行项目实践。课程涵盖计算机视觉的七大任务,包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)、人脸识别、图像描述、图像检索、图像生成(利用生成对抗网络)。本课程注重原理和实践相结合,逐篇深入解读经典和前沿论文70余篇,图文并茂破译算法难点, 使用思维导图梳理技术要点。项目实践使用Keras框架(后端为Tensorflow),学员可快速上手。<br /> <br /> 通过本课程的学习,学员可把握基于深度学习的计算机视觉的技术发展脉络,掌握相关技术原理和算法,有助于开展该领域的研究与开发实战工作。另外,深度学习之计算机视觉方向的知识结构及学习建议请参见本人CSDN博客。<br /> <br /> 本课程提供课程资料的课件PPT(pdf格式)和项目实践代码,方便学员学习和复习。<br /> <br /> 本课程分为上下两部分,其中上部包含课程的前五章(课程介绍、深度学习基础、图像分类、目标检测、图像分割),下部包含课程的后四章(人脸识别、图像描述、图像检索、图像生成)。 </p> <div> <br /> </div> <p> <br /> </p> <p> <br /> </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/201902211157137641.jpg" alt="" /><img src="https://img-bss.csdn.net/201902211157578041.gif" alt="" /><img src="https://img-bss.csdn.net/201902211158173579.gif" alt="" /><img src="https://img-bss.csdn.net/201902211158498135.gif" alt="" /><img src="https://img-bss.csdn.net/201902211159093293.gif" alt="" /><img src="https://img-bss.csdn.net/201902211159209625.gif" alt="" /> </p> <p style="font-size:16px;"> <br /> </p>
<p> ROS(机器人操作系统)是一款成熟的机器人操作系统,具有完备的生态体系,未来的发展意义可以成为机器人届中的”Linux、Android“。机器人的开发学习要综合软硬件的协同开发,硬件开发有些部分倾向于底层的设计和使用。软件开发可以依托C++、PYTHON等高级语言进行ROS接口应用开发,或者兼容ROS系统。 </p> <p> 本系列的ROS开发课程包含下位机开发、上位机开发、基于MBD(基于模型设计的开发)等。下位机作为机器人设计的基础部分是学习机器人操作系统必经之路,下位机我们通常会选择Arduino(适合学习不适合工程,代码执行效率差)、STM32系列产品(工程应用广泛,适合学习和工程开发,代码针对性强),当然还有NXP系列、51系列、TI DSP等,后期可以根据产品的性能和成本要求去考虑;上位机部分,主要是基于工控机、树莓派Raspberry、英伟达Jetson等可以运行操作系统的嵌入式设备再基于ROS操作系统进行实训学习。 </p> <p> 网络上对于ROS类的教学比较多,但是系统化从底层向高阶层层递升的教学方法偏少,知识碎片化严重,对机器人开发工程师深远的发展有负面影响,基于此本人通过多年自身的学习和工程实践,将机器人开发课程系统化、具象化、模块化地引导式学习,每节课程都有相应的课件和代码引导。对致力于机器人事业的学生有推动作用,且增强信心,系统化自己的机器人知识。为自己的职业规划和事业发展奠定坚实基础。 </p> <p> 最后,你们的支持,就是老师不断创作的动力!老师会不断更新机器人类相关知识,希望”与子同裳“。 </p>
<p> <strong><span style="font-size:16px;color:#337FE5;"><b><a target="_blank" href="https://edu.csdn.net/bundled/detail/308"></a><a target="_blank" href="https://edu.csdn.net/bundled/detail/308"><span> </span></a></b></span></strong> </p> <p class="ql-long-39788408" style="font-size:11pt;color:#494949;"> <strong><b><strong><a class="ql-link ql-size-12 ql-author-39788408" href="https://edu.csdn.net/bundled/detail/298" target="_blank">[本课程属于AI完整学习路线套餐,该套餐已“硬核”上线,点击立即学习!]</a></strong> </b></strong> </p> <p class="ql-long-39788408" style="font-size:11pt;color:#494949;"> <br /> </p> <p> <strong><span style="font-size:16px;color:#337FE5;"><img src="https://img-bss.csdnimg.cn/202011090216454206.png" alt="" /><br /> </span></strong> </p> <p> <strong><span style="font-size:16px;color:#337FE5;"><br /> </span></strong> </p> <p> <strong><span style="font-size:16px;color:#337FE5;">【为什么要学习深度学习和计算机视觉?】</span></strong> </p> <p> <span style="font-family:"background-color:#FFFFFF;">AI人工智能现在已经成为人类发展中最火热的领域。而计算机视觉(CV)是AI中最热门,也是落地最多的一个应用方向<span style="font-family:"background-color:#FFFFFF;">(人脸识别,自动驾驶,智能安防,车牌识别,证件识别)</span>。</span><span style="font-family:"background-color:#FFFFFF;">所以基于人工智能的计算视觉行业必然会诞生大量的工作和创业的机会。如何能快速的进入CV领域,同时兼备理论基础和实战能力,就成了大多数学习者关心的事情,而这门课就是因为这个初衷而设计的。<br /> </span> </p> <p style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <br /> </p> <p style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span style="font-size:16px;color:#337FE5;"><strong>【讲师介绍】</strong></span> </p> <p style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span style="font-size:16px;color:#337FE5;"><strong>CH<strong><span style="font-family:"color:#222226;font-size:16px;background-color:#FFFFFF;font-weight:700;">ARLIE 老师</span></strong></strong></span> </p> 1、人工智能算法科学家<br /> 2、深圳市海外高层次人才认定(孔雀人才)<br /> 3、美国圣地亚哥国家超算中心博士后<br /> 4、加利福尼亚大学圣地亚哥全奖博士<br /> 5、参与美国自然科学基金(NSF)及加州能源局 (CEC)资助的392MW IVANPAH等智慧电网项目<br /> 6、21篇国际期刊文章(sci收录17篇),总引用接近1000<br /> 7、第一作者发明专利11份<br /> <p> <br /> </p> <p class="ql-long-24357476" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span style="font-family:"color:#337FE5;"><span><span style="font-size:16px;"><strong>【推荐你学习这门课的理由:</strong></span><span style="color:#E53333;font-size:16px;"><strong>知识体系完整+丰富学习资料】</strong></span></span></span> </p> <p class="ql-long-24357476" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span class="ql-author-24357476" style="font-family:""></span> </p> <p class="MsoNormal" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> 1、本课程总计9大章节,是一门系统入门计算机视觉的课程,未来将持续更新。 </p> <p class="MsoNormal" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span>2</span>、<span>课程从计算机视觉理论知识出发,理论结合实战,手把手的实战代码实现(霍夫变换与模板匹配,</span><span>AlexNet OCR</span><span>应用</span><span>,VGG</span><span>迁移学习,多标签分类算法工程)</span> </p> <p class="MsoNormal" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span>3</span>、<span>带你了解最前沿技术,</span><span>各类型算法的优点和缺点,掌握数据增强,</span><span>Batchnormalization, Dropout</span><span>,迁移学习等优化技巧,搭建实用的深度学习应用模型</span> </p> <p class="MsoNormal" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span>4</span>、学习完后,你将具有深度学习与计算视觉的项目能力,比如大学生学完可以具备独立完成机器视觉类毕业设计的能力,在求职过程中可以体系化的讲解机器视觉核心知识点,初步达到人工智能领域机器视觉工程师的水平 </p> <span style="color:#222226;font-family:PingFangSC-Regular, "font-size:14px;background-color:#FFFFFF;"></span> <p style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <br /> </p> <p class="ql-long-24357476" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <strong><span style="color:#337FE5;font-size:16px;">【学完后我将达到什么水平?】</span></strong> </p> <p class="ql-long-24357476"> <span>1、<span style="font-family:"">零基础入门计算视觉,学习掌握并应用从经典图像处理到深度学习分类任务的要点知识</span></span> </p> <p class="ql-long-24357476"> <span>2、<span style="font-family:"">掌握数据增强,迁移学习等优化技巧,搭建实用的深度学习应用模型</span></span> </p> <p class="ql-long-24357476"> <span>3、<span style="font-family:"">学习完课程,可以独立应用多个经典算法和深度学习算法</span></span> </p> <p class="ql-long-24357476"> <span>4、<span style="font-family:"">以</span><span style="font-family:"">大学毕业设计,面试找工作为目标,</span><span style="font-family:"">手把手带大家编程,即使没有太多计算视觉的背景知识也可以循序渐进完成课程,获得实战项目的经验</span></span> </p> <p class="ql-long-24357476"> <br /> </p> <p class="ql-long-24357476"> <span style="color:#337FE5;"><b><span style="background-color:#FFFFFF;color:#337FE5;"><span style="font-size:16px;color:#337FE5;">【面向人群】</span></span></b></span> </p> <p class="ql-long-24357476"> <span>1、对AI感兴趣,想要系统学习计算机视觉的学员</span> </p> <p class="ql-long-24357476"> <span>2、<span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">需要毕业设计的大学生</span></span> </p> <p class="ql-long-24357476"> <span>3、<span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">做图像分析或相关数据分析的研究生</span></span> </p> <p class="ql-long-24357476"> <span>4、<span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">准备面试计算视觉和深度学习岗位的应聘者</span></span> </p> <p class="ql-long-24357476"> <span>5、<span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">希望在项目中引入计算视觉</span><span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">/</span><span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">深度学习技术的开发人员</span></span> </p> <p class="ql-long-24357476"> <br /> </p> <p class="ql-long-24357476"> <b><span style="font-family:"font-size:16px;background-color:#FFFFFF;color:#337FE5;"><span style="font-size:16px;color:#337FE5;">【课程知识体系图</span><span style="font-size:16px;color:#337FE5;">】</span></span></b> </p> <p class="ql-long-24357476"> <span><b><img src="https://img-bss.csdnimg.cn/202007140746422581.png" alt="" /></b></span> </p> <p class="ql-long-24357476"> <span><b><br /> </b></span> </p> <p class="ql-long-24357476"> <span style="font-size:16px;color:#337FE5;"><b>【实战项目】</b></span> </p> <p class="ql-long-24357476"> <b><img src="https://img-bss.csdnimg.cn/202007150352244062.png" alt="" /><img src="https://img-bss.csdnimg.cn/202007150517376530.png" alt="" /></b> </p> <p class="ql-long-24357476"> <br /> </p>
<p>      掌握基于腾讯人工智能(AI)的车牌识别技术,使用车牌识别技术实现一个完整的停车场管理系统,项目包括网页调用摄像头拍照,车牌拍照识别,上传车牌图片识别,用户管理,车辆管理(临时车与包月车),车辆出场,入场管理,停车费收费管理,按照临时车或包月车自动计算停车费,系统参数设置,修改用户密码及安全退出等功能,该系统采用Jsp技术,使用SSM框架,Mysql数据库,ajax技术及人工智能等相关技术实现。</p> <h2><span style="color: #e03e2d;">重要通知:本课程根据腾讯AI车牌识别新接口,更新了新接口源代码,发布程序,购买了课程的同学可以下载新程序,包括(运行程序及源代码),更新时间:2021-2-17</span><br /><br /><span style="color: #e53333;">项目开发技术:java,jsp,mysql,MyBatis,SpringMVC,jquery,ajax,json</span><br /><span style="color: #e53333;">项目运行环境:jdk1.7及以上版本,tomcat6.0及以上版本,mysql5.5及以上版本</span><br /><span style="color: #e53333;">项目开发工具: 本项目开发工具是Eclipse,也支持myEclipse,Intellij Idea等其他版本开发工具</span><br /><br /></h2> <p style="color: #333333;"><span style="font-size: 20px;"><span style="color: #ff0000;"><strong>相关课程学习顺序</strong></span></span></p> <p style="color: #333333;">本校课程是培养JAVA软件工程师及JSP WEB网络应用程序开发,android工程师的全套课程,课程学习顺序如下:<br /><span style="color: #ff0000;"><strong>JAVA初级工程师:</strong></span><br />    1、计算机基础<br />    2、HTML语言基础<br />    3、C语言从入门到精通+贪吃蛇游戏<br />    4、贪吃蛇游戏<br />    5、SQL SERVER数据库基础<br />    6、JAVA从入门到精通+推箱子游戏+QQ即时通讯软件<br />    7、推箱子游戏;<br />    8、仿QQ即时通讯软件;<br /><span style="color: #ff0000;"><strong>JAVA中级工程师:</strong></span><br />    9、SQLSERVER数据库高级<br />    10、SQLSERVER从入门到精通(基础+高级)<br />              11、JavaScript从入门到精通,<br />    12、JSP从入门到精通+点餐系统,<br />    13、JSP从入门到精通+在线视频学习教育平台,<br />    14、JSP从入门到精通+大型电商平台;<br />    15、XML从入门到精通,<br />    16、数据结构(JAVA版),<br /><span style="color: #ff0000;"><strong>JAVA高级工程师:</strong></span><br />    17、Oracle数据库从入门到精通,<br />    18、ajax+jquery从入门到精通,<br />    19、EasyUI从入门到精通,<br /><span style="color: #ff0000;"><strong>SSH框架:</strong></span><br />    20、Struts2从入门到精通课程,<br />    21、Hibernate从入门到精通课程,<br />    22、Spring从入门到精通课程;<br />    23、Echarts从入门到精通,<br />    24、Excel基于POI的导入导出<br /><span style="color: #ff0000;"><strong>工作流框架:</strong></span><br />    25、Activiti流程框架从入门到精通<br />    26、JBPM流程框架从入门到精通<br /><span style="color: #ff0000;"><strong>SSM框架:</strong></span><br />    27、MyBatis从入门到精通<br />    28、Spring MVC从入门到精通<br /><span style="color: #ff0000;"><strong>面试题:</strong></span><br />    29、职业生涯规划及面试题集锦<br /><span style="color: #ff0000;"><strong>商业项目:</strong></span><br />    30、微信公众号在线支付系统<br />    31、微信生活缴费在线支付系统<br />    32、支付宝生活缴费在线支付系统<br />    33、在线考试系统<br />    34、手机订餐管理系统,<br />    35、CRM客户关系管理系统<br />    36、大型房地产CRM销售管理系统<br />    37、CMPP2,CMPP3移动网关系统<br /><span style="color: #ff0000;"><strong>人工智能:</strong></span><br />    38、人脸识别在线考试系统<br />    39、人脸识别系统项目实战<br />    40、车牌识别系统项目实战<br />    41、身份证识别系统项目实战<br />    42、营业执照识别系统项目实战</p> <p style="color: #333333;">          43、名片识别管理系统</p>
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页